

ARSET

Applied Remote Sensing Training

http://arset.gsfc.nasa.gov

@NASAARSET

Estimation of Emissions From Satellites: Trace Gases

Melanie Follette-Cook, Pawan Gupta

Satellite Remote Sensing of Air Quality

Tuesday, Sep 19, 2017 – Thursday, Sep 21, 2017 University of California, Riverside

Learning Objectives

By the end of this presentation you will be able to:

- List several ways satellite observations of trace gases can be used to estimate surface emissions or supplement current emissions inventories
- Learn about relevant data products and satellite retrievals that have near-surface sensitivity

Satellite Remote Sensing of Trace Gases for Air Quality Overview

- With advances in the detection of atmospheric pollution from space, atmospheric composition can be measured at higher spatial and temporal resolutions
- If chemistry and transport can be accounted for, satellite observations can be used to estimate emission rates

Review articles:

Streets et al. 2013, Atmospheric Environment

Emissions estimation from satellite retrievals: A review of current capability

Duncan et al. 2014, Atmospheric Environment (free)

Satellite data of atmospheric pollution for U.S. air quality applications: Examples of applications, summary of data end-user resources, answers to FAQs, and common mistakes to avoid

Satellite Remote Sensing of Trace Gases for Air Quality

Types of emissions that satellite observations can help constrain

- Anthropogenic point source emissions
 - Power plants
- Natural point sources
 - Volcanoes
- Anthropogenic area sources
 - Energy extraction, shipping emissions, megacities
- Natural area sources
 - Biomass burning, soils, lightning, biogenic

Bottom-Up Emissions Inventories

- Big undertaking
- Dependent on historical information
- Dependent on sparse spatial and temporal network

Power plant image: http://cbf.typepad.com/

Ship image: http://www.un.org/

Cars image: By User Minesweeper on en.wikipedia

Airplane: http://www.gettyimages.com/

Methods

- Inverse Modeling
- Oversampling
- Temporal updates to trends or variability

Inverse Modeling

- Attribute changes in observed concentrations to changes in emissions
- Constrains emissions using:
 - Observations (e.g. satellite measurements)
 - Background information (a priori)
 - Model simulation of the observed quantity with associated error estimates¹

¹Streets et al. (2013) Atmos. Environ.

Inverse Modeling – Mass Balance

Basic Mass Balance Method

$$E_{\scriptscriptstyle S} = \alpha * \Omega_{observed}$$
 Observed atmospheric column

Emission of species, s

$$lpha = \left(rac{E_a}{\Omega_m}
ight)$$
 A priori emissions inventory Model atmospheric column

Inverse Modeling

 Becomes more complicated and computationally expensive as the number of observations increases

- Often uses Bayes theory, which is used to describe the probability of an event, given prior knowledge of other probabilities
- Most inversion methods seek to minimize a cost function or equivalently, use the pdf of the predicted values to find the value that represents the most likely choice (i.e. the maximum of the pdf)

Oversampling

 By averaging at high resolutions over longer time intervals, it is possible to increase the resolution of the original data

Ben de Foy: https://dnr.mo.gov/env/apcp/docs/emissioninventories.pdf

R: Refinery

Updating Inventory Trends

- Creating a bottom up emissions inventory is time consuming and labor intensive
 - e.g., Currently the most up-to-date U.S.
 emissions inventory is the NEI 2014
- Satellite observations and trends can be used to update bottom-up emissions inventories until a new inventory is completed
- Example: Lamsal et al. 2011 used a chemistry transport model to estimate how changes in emissions related to changes in the atmospheric column
- Then they applied this relationship using postinventory satellite observations

Satellite observations can be used to monitor changes in emissions over time

North Dakota

Texas

Suomi NPP VIIRS Lights at Night

Courtesy of: Bryan Duncan

- Satellite observations can also be used to detect potential short term and unexpected changes in trends, such as reductions in activity due to:
 - economic recession
 - natural disasters (e.g., Hurricane Katrina)
 - policy interventions (e.g., Beijing Olympics)
 - civil unrest

Damascus: -37.1 ± 10.9% Aleppo: -40.2 ± 13.6%

- Examine finer temporal emissions cycles
 - Weekly cycles
 - Seasonal cycles of different sources
 - Anthropogenic Winter
 - Soil Summer
 - Biomass Burning Dry Season

Anthropogenic Soil Biomass Burning

Figures 3, 5, and 7 from van der A. et al. 2008

Nitrogen Dioxide (NO₂)

- Why measure NO₂?
 - NO₂ is an ozone precursor and health irritant
 - Sources: Fires, industrial and transportation sources, stationary sources (e.g., power plants), but emissions can vary depending on fuel type and conditions
 - Relatively short-lived, so large gradients and high concentrations within the planetary boundary layer (PBL)
 - Satellite observations have been used in many inverse modeling studies

Source: Duncan, B.N. et al. (2016)

OMI Trends in NO₂ Correlate Well With Surface Trends

Source: Lamsal, L.N. et al. (2016)

Satellite-Based Surface NO₂

Available from the University of Dalhousie website:

http://fizz.phys.dal.ca/~atmos/martin/?page_id=232

Time Period	1996-2012	2005-2007	
Available Product	Annual Mean, 3-Yr Running Mean	Annual Mean (North America and global)	
Instruments	GOME, SCIAMACHY, GOME-2	OMI	
Overpass Time	~9:30-10:30	~13:30	
Product Resolution	ion 0.1° x 0.1° 0.1° x 0.1		
Reference	Geddes et al. (2015)	Lamsal et al. (2008, 2010)	

Estimating Surface NO₂ From the Tropospheric Column

Satellites measure backscattered radiation, from which vertical column densities can be calculated

Courtesy of Randall Martin

Estimating Surface NO₂ From the Tropospheric Column

$$v = \frac{\Omega_{Satellite}}{\Omega_{Model}}$$

$$S = \Omega_{Sat} x \left[\frac{vS_{Model}}{v\Omega_{Model} - (v - 1)\Omega_{FT (Model)}} \right]$$

Use vertical information from an atmospheric chemistry model to estimate the relationship between the column and the surface

S = Surface Concentration

 Ω = Tropospheric Column

FT = Free Troposphere

Courtesy of Randall Martin

Ground-Level Afternoon NO₂ Inferred from OMI for 2005

Note: this is a research product and not an official NASA product

Source: Lok Lamsal

Sulfur Dioxide (SO₂)

- Why measure SO₂?
 - SO₂ has also been linked to adverse respiratory effects
 - Contributes to acid deposition
 - Sources: volcanoes, coal and oil burning

https://so2.gsfc.nasa.gov/

https://so2.gsfc.nasa.gov/

OMI SO₂ Gridded Product Summary

SO ₂ Product	Level	Data Short Name	Altitude Sensitivity	Use
PBL SO ₂	L3 0.25° x0.25°	OMSO2e	0.6 km	Fossil fuel, industry
TRL SO ₂	L2G 0.25° x0.25°	OMSO2G	3 km	Optimized for volcanic degassing
TRM SO ₂	L2G 0.25° x0.25°	OMSO2G	8 km	Plumes from moderate eruptions
STL SO ₂	L2G 0.25° x0.25°	OMSO2G	18 km	Explosive volcanic eruptions

Caveat: Unlike the OMSO2e 'best' product, L2G data is **not** screened for clouds, solar zenith angle, quality flags, and row anomalies

Emissions from OMI SO₂

https://so2.gsfc.nasa.gov/measures.html

Assuming steady state:

$$E = \frac{\alpha}{\tau} \quad \text{Mass of SO}_2$$

$$E = \frac{\sigma}{\tau} \quad \text{Decay time}$$

Emissions from OMI SO2

https://so2.gsfc.nasa.gov/measures.html

Level 2 PBL SO2 Oversampled to 0.04°

Winds from ECMWF

Comparison Chart – NO₂, SO₂

	GOME	SCIAMACHY	GOME-2	OMI	OMPS	TROPOMI
Time Period	1995-2003	2002-2011	2007 - present	2004 - present	2012 - present	2017 launch?
Product/ Pixel Size	320 x 40 km	60 x 30 km	80 x 40 km	13 x 25 km	50 x 50 km	7 x 7 km
Global Coverage	3 days	6 days	1.5 days	Daily	Daily	Daily
Overpass Time	10:30	10:00	09:30	13:45	13:30	N/A
Spectral Region	UV, VIS	UV, VIS	UV, VIS	UV, VIS	UV, VIS	UV, VIS, NIR, & SWIR

Evolution of Spatial Resolution

GOME-2 SCIAMACHY OMI TROPOMI TEMPO

Ammonia (NH₃)

- Why measure NH₃?
 - Excess deposition can lead to soil acidification of terrestrial ecosystems and eutrophication of coastal ecosystems
 - Can combine to form ammonium nitrate and ammonium sulfate, which contribute to PM_{2.5}
 - Sources: agriculture, animal waste, and industrial emissions
 - Short atmospheric lifetime (hours)
 - Difficult to measure, surface level monitoring of NH₃ is sparse

Measurement Comparison Chart – NH₃

	AIRS	TES	IASI
Time Period	2002 - Present	2004 - Present	2006 - Present
Product / Pixel size	45 x 45 km	5.3 x 8.5 km	12 x 12 km
Global Coverage	Daily	2x/day	Megacities
Overpass Time	13:30	13:45/ 1:45	9:30/21:30
Spectral Region	VIS, IR	Thermal IR	Thermal IR
Detection Limit		1 ppb	2-5 ppb

- Most NH₃ is near the surface, making it challenging to retrieve
- When there is high enough thermal contrast (temperature difference between the surface and the PBL) both retrievals show sensitivity to boundary later NH₃ concentrations
- Heald et al. (2012) using IASI concluded that CA NH₃ emissions were underestimated
- Zhu et al. 2013 using TES, along with GEOSChem and its adjoint, concluded that the NH₃ emission inventory was broadly underestimated in the West US

Contact Information

- To obtain NH₃ data, contact:
- AIRS
 - Juying Warner:jwarner5@umd.edu
- IASI
 - Pierre Coheur:<u>pfcoheur@ulb.ac.be</u>
- TES
 - Karen Cady-Pereira:kcadyper@aer.com

AIRS NH3 @ 918 hPa 2002-2016

Figure 2 from Warner et al. 2017

Formaldehyde (CH₂O)

- Why measure formaldehyde?
 - Formaldehyde is an ozone precursor and can serve as a proxy for total VOC chemical reactivity and isoprene emissions
- VOC sources: Biogenic, anthropogenic, and fires
- Short lifetime (few hours)

HCHO

Lei Xhu et al. 2017

 Calculated annual mean surface concentration of HCHO using OMI and associated cancer risk

First, oversampled to 5 x 5 km² to relate concentrations to population estimates

Figure 2 from Xhu et al. 2017

HCHO

For each grid cell:

$$\bar{C} = \bar{\Omega} \gamma_1 \gamma_2 \gamma_3$$

 $ar{\mathcal{C}}$ = annual mean surface concentration $\overline{\Omega}$ = Oversampled summer mean column γ_1 = ratio of midday surface to column concentrations in summer γ_2 = ratio of 24 h average to midday concentrations in summer γ_3 = ratio of annual mean to summer mean concentrations

OMI-Derived Mean HCHO and Associated Cancer Risk

Measurement Comparison Table – HCHO

	GOME	SCIAMACHY	GOME-2	OMPS	OMI
Time Period	1995 – 2003	2002 – 2011	2007 – present	2012 - present	2004 – present
Product / Pixel Size	320 x 40 km	60 x 30 km	80 x 40 km	50 x 50 km	13 x 25 km
Global Coverage	3 days	6 days	1.5 days	Daily	Daily
Overpass Time	10:30	10:00	9:30	13:30	13:45
Spectral Region	UV, VIS	UV, VIS	UV, VIS	UV, VIS	UV, VIS

- Caution should be used when using these data for quantitative analyses
 - When compared to observations, satellite observations of HCHO are biased low

Carbon Monoxide

- Why measure CO?
 - Major global precursor for O₃, and dominant sink for OH
 - Relatively long lifetime (~1-2 months)
 makes it a useful tracer of transport
- Sources: Chemical production (oxidation of VOCs) and incomplete combustion (fossil fuel burning, fires)
- Instruments (e.g., MOPITT, AIRS) tend to have good sensitivity to CO in the mid-troposphere (~500 mb)
- Current sensors: AIRS, MOPITT, IASI

Measurement Comparison Table - CO

	MOPITT	AIRS	IASI
Product / Pixel Size	22 x 22 km	14 x 14 km	12 x 12 km
Swath Width	650 km	1,650 km	2,200 km
Global Coverage	3 days	2x per day	2x per day
Overpass Time	10:30	13:30	9:30, 21:30
Product Resolution	L3: 1° Grid	L3: 1° Grid	NO L3 Product
Products Available	L2 L3, Daily, Monthly	L2 granule L3	L2 NOAA & ESA
Vertical Sensitivity	mid & lower troposphere	mid troposphere	mid troposphere
Product Accuracy	TIR: 2% Near Surface: 3%	10-20%	<10%

TIR vs. NIR vs. TIR-NIR: MOPITT

- Thermal IR (TIR)
 - $-4.6 \, \mu m$
 - Most sensitive to mid-tropospheric
 CO
 - Highest temporal stability
- Near IR (NIR)
 - $-2.3 \mu m$
 - Sensitivity at all altitudes
 - Daytime only
 - Most appropriate for analysis of total columns

- TIR-NIR
 - Greatest vertical resolution
 - Largest sensitivity to lower tropospheric CO
 - However, random retrieval errors and bias drift
 - Use only daytime, over land

Deeter et al. 2017, https://www.atmos-meas-tech.net/10/2533/2017/amt-10-2533-2017.pdf

Questions & Discussion Prompts

- Name one way satellite observations can supplement an emissions inventory.
- What are the advantages and limitations of using satellite data to estimate surface concentrations?

